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ABSTRACT 

To obtain the expressions for mean and variance of reliability estimate,̂R P(X Y)= ≥ , analytically, is generally 

difficult. Here, we find approximate expressions for mean and variance of estimated system reliability in interference 

theory when stress and strength follow some particular distributions. We have evaluated approximates of mean and 

variance of estimated reliability when stress-strength both follows either exponential or normal distribution. For validity of 

approximation method, we have used Monte-Carlo simulation. Also, Normal probability plots of estimated reliability 

samples are drawn for different values of the parameters of the distribution. From Monte Carlo simulation (MCS), it is 

observed that approximation for mean and variance of estimated reliability is up to the mark.  

KEYWORDS:  Reliability, Interference Theory, Monte-Carlo Simulation (MCS) 

1. INTRODUCTION 

In Interference theory of reliability R=P(X>Y), the reliability of a system and its other reliability characteristics 

can be expressed as some functions of the parameters of the distributions of strength (X) and stress (Y) associated with the 

functioning of the system. We estimate these parameters and substitute these values in the expressions for reliability and 

other characteristics to get their estimates. If the estimates of parameters used here are maximum likelihood estimators then 

from the invariance property of MLE’s, the corresponding estimators of reliability are also MLE’s. There exists extensive 

literature for estimation of reliability analytically for single component systems. But the reliability expressions for       

multi-component systems are not simple enough to facilitate analytical estimation of reliability and its other characteristics. 

Also, due to lack of stress-strength data one way out is simulation. For example, (Manders et al., 1982, Aldrisi, 1987, 

Stumpf and Schwartz 1993, Zhang et al., 2010) have simulated stress-strength and estimated reliability. (Paul and 

Borhanuddin, 1997, Rezaei et al., 2010) estimated reliability of stress-strength model, using Monte-Carlo simulation 

(MCS). (Ahmad et al., 1997), obtain Bayes estimates of P(Y<X) using MCS. (Uddin et al., 1993) estimated reliability for 

multicomponent system using MCS. (Patowary et al., 2012) estimated reliability of n-standby system using Monte-Carlo 

simulation. Similarly, it is difficult to obtain the distribution of a reliability estimator or even its exact mean and variance, 

analytically. In this paper, an attempt has been made to find approximate expressions for mean and variance of estimated 

reliability on the basis of (Lyold and Lipow, 1962) and check the validity of the approximation by Monte-Carlo simulation.  

In Section 2, we have given the approximate expressions for mean and variance of single parameter and two 

parameters distribution cases. In Section 3, approximation expressions of mean and variance are obtained when stress-

strength (S-S) both follows exponential or normal distribution. Also, Monte-Carlo simulation (MCS) is extensively 
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performed for verification purpose of expressions.  

2. METHOD TO OBTAIN MEAN AND VARIANCE OF ESTIMATED RELIABILITY 

In this paper, existing method of (Lloyd and Lipow, 1962) is used to estimate reliability in interference models 

when stress-strength follows particular distribution. However, as it is not easy to get real life data, we have used MCS for 

estimation of mean and variance of estimated reliability.  

The reliability can be expressed as a function of the parameters θɶ = 1 2,  ,    ...  θ θ  of the distributions of strength 

X and stress Y. According to the above method, if R̂ (θɶ ) is the MLE of R (θɶ ), then 

(i) If θɶ = θ  i.e only one parameter is involved, then the approximate mean of ˆR̂( )θ  is given by 

E ˆR̂( ) θ   = R (θ ) + O
1

M
 
 
 

, when E (̂θ ) ~ θ ,                                                                                              (2.1) 

Where O
1

M
 
 
 

 �0 as M �∞ . 

M is the sample size of estimated reliability samples. Obviously, ˆR̂( )θ  is asymptotically unbiased for R(θ ). 

The approximate variance of ˆR̂( )θ  is given by  

Var ˆR̂( ) θ   = 
ˆ

ˆR̂( )
ˆ

θ=θ

 ∂ θ
 

∂ θ 
Var (θ̂ ) + O

3/ 2

1

M

 
 
 

                                                                                      (2.2) 

where O
3/ 2

1

M

 
 
 

�0 as M �∞ . 

(ii) If θɶ = (λ ,µ ), i.e., two parameters case, then the approximate mean and variance of ̂R ( λ̂ , µ̂ ) are given, 

respectively, by Eq.(2.3) and Eq.(2.4)  

ˆˆ ˆE R( , ) λ µ 
= R(λ ,µ ) + O

1

M
 
 
 

,                                                                                                                   (2.3) 

when E(λ̂ ) ~ λ  and E(̂µ ) ~ µ .  

So, R̂ ( λ̂ , µ̂ ) is asymptotically unbiased for R(λ ,µ ) .  

And ˆˆ ˆVar R( , ) λ µ 
= 

2

ˆ ˆ,

ˆˆ ˆR( , )
ˆ

λ=λ µ =µ

 ∂ λ µ
 

∂ λ 
 Var(λ̂ ) + 

2

ˆ ˆ,

ˆˆ ˆR( , )
ˆ

λ=λ µ =µ

 ∂ λ µ
 ∂ µ 

Var(µ̂ ) 
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 + 
ˆ ˆ,

ˆˆ ˆR( , )
ˆ

λ=λ µ =µ

 ∂ λ µ
 

∂ λ  ˆ ˆ,

ˆˆ ˆR( , )
ˆ

λ=λ µ =µ

 ∂ λ µ
 ∂ µ 

Cov(λ̂ , µ̂ ) + O
3/ 2

1

M

 
 
 

,                                                    (2.4) 

Let DM be the difference between ˆˆ ˆE R( , ) λ µ 
and R(λ ,µ ) i.e.  

DM = ˆˆ ˆE R( , ) R( , ) λ µ − λ µ                                                                                                                           (2.5) 

Similarly, let DV be the difference of ˆˆ ˆV ar R( , ) λ µ 
and r.h.s of Eq.(2.4).  

If the values of these differences are negligible, then approximate expressions are considered as satisfactory. 

3. STRESS-STRENGTH FOLLOWS PARTICULAR DISTRIBUTION  

We have seen that in interference models system reliability is a function of stress-strength parameters. Let f(x) be 

the p.d.f. of strength (X) of the system and g(y) be that of the stress (Y) on the system. Here, we have considered two 

cases. 

Case I: When both f(x) and g(y) follows exponential distribution (one parameter case) 

Case II: When both f(x) and g(y) follows normal distribution (two parameter case) 

3.1 Stress-Strength Exponentially Distributed 

Let f(x) and g(y) be exponential with means λ  andµ , respectively. Then the system reliability is given by   

(Kapur and Lamberson, 1977) 

R = 
λ

λ + µ
 = R (λ ,µ ), say, λ  > 0, µ  > 0                                                                                                       (3.1.1) 

Suppose M units are put on test. Let x1, x2, …, xM be the strengths of the M units and let y1, y2, …, yM be the 

stresses working on them. Now we know that for exponential distribution sample mean is an MLE of population mean, and 

is unbiased, consistent, sufficient and efficient. Hence, x i
1

x
M

 = ∑ 
 

 and y i
1

y
M

 = ∑ 
 

 are MLE’s of λand µ  with 

the same properties, 

i.e. λ̂  = x  and µ̂  = y                                                                                                                                        (3.1.2) 

An estimate of R is given by  

R̂ = 
x

x y+
 = R̂(x,  y), say                                                                                                                            (3.1.3) 

Since, R̂ is a one-valued function of x  and y , hence from the properties of MLE’s, R̂ is an MLE of R. So     

from Eq.(2.3) 
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ˆE R(x,  y) 
  = R( ,  )λ µ + O

1

M
 
 
 

,                                                                                                               (3.1.4) 

Thus R̂(x,  y) is asymptotically unbiased forR( ,  )λ µ . 

Further, since X and Y are independent hence x  and y  are also independent and so  

Cov(x,  y)= 0                                                                                                                                                  (3.1.5) 

Then from Eq.(2.4) and Eq.(3.1.5) we have  

ˆVar R(x,  y) 
  =

2

x ,y

R̂(x, y)

x
= λ = µ

 ∂
 ∂ 

 Var(x)  + 

2

x ,y

R̂(x, y)

y
= λ = µ

 ∂
 ∂ 

Var(y)   

 + O
3/ 2

1

M

 
 
 

                                                                                                                                                    (3.1.6) 

Now, from Eq.(3.1.3)  

R̂ (x, y)

x

 ∂
 ∂ 

 = 2

y

(x y)+
 and 

R̂ (x, y)

y

 ∂
 ∂ 

= 2

x

(x y)

−
+

                                                                       (3.1.7) 

We also know that for exponential distributions, considered here 

Var (X) = 2λ  and Var(Y) = 
2µ  

Hence, Var(X ) =
Var(X)

M
= 

2

M

λ
 and Var(Y ) =

Var(Y)

M
=

2

M

µ
                                                                  (3.1.8) 

Substituting from Eq.(3.1.7) and Eq.(3.1.8) in Eq.(3.1.6), after some simplifications, we get 

ˆVar R(x,  y) 
  = 

2 2

4

2

M( )

λ µ
λ + µ

 + O
3/ 2

1

M

 
 
 

,                                                                                            (3.1.9) 

which �0 as M�∞ . Hence, R̂(x,  y) is consistent for R( ,  )λ µ . Thus R̂(x,  y) is asymptotically unbiased, 

consistent and sufficient for R( ,  )λ µ , sincex , y  are sufficient for λ  andµ , respectively. 

From Eq.(3.1.4) and Eq.(3.1.9) we get 

DM = ˆE R(x, y)
λ  −  λ + µ

                                                                                                                       (3.1.10) 

DV= 
2 22ˆVar R(x, y)

M( )

λ µ  −  λ + µ
                                                                                                             (3.1.11) 



Evaluating Approximate Mean and Variance of Estimated Reliability in Interference
Models using Monte-Carlo Simulation (MCS) 

 
www.iaset.us                                            

We use MCS to establish the validity of t

independent samples of sizes M from 

estimates of λ  and µ  as x  and y  and su

is repeated k times and accordingly we get k values of

ˆ[R(x, y)] . The values are tabulated in Table 

and found that the fitting of normal 

illustration purpose, we have given a NPP graph for 

obtained from Eq.(3.1.10) and Eq.(3.1.11

Note: In Table 3.1.1, V = 
M( )

M K λ  µ  

500 50 2 2 0.5000
500 200 2 2 0.5000
500 100 2 2 0.5000
500 100 3 2 0.6000
500 100 2 3 0.4000
100 100 2 2 0.5000
100 100 2 3 0.4000
100 100 3 2 0.6000
50 100 2 2 0.5000
50 100 2 3 0.4000
50 100 3 2 0.6000

As noted earlier, for achieving a better estimates of R, we have taken M = 500. 

Eq.(3.1.4) and Eq.(3.1.9), we have taken M = 50 and 100 also and found that all z

when k = 100, λ= 2 and µ= 2. The values of DM and DV are quite small for different values of M, so we may assume 
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e use MCS to establish the validity of the approximate expressions Eq.(3.1.4) and Eq.(3.1.9

independent samples of sizes M from exp( )λ  andexp( )µ , populations for a given λ  and 

and substituting these values in Eq.(3.1.4) we get an estimate of 

is repeated k times and accordingly we get k values of R̂ . We obtain mean and variance of 

. The values are tabulated in Table 3.1.1. We have also drawn normal probability plot

 distribution is quite good. It conform finding of (Lloyd and Lipow

we have given a NPP graph for λ= 2, µ= 2, M = 500 and k = 100 in Fig.3.2.1

obtained from Eq.(3.1.10) and Eq.(3.1.11) for givenλ , µ  and M and given in the same Table 3.1.1

Figure 3.1.1: (Exponential S-S) 

2 22

M( )

λ µ
λ + µ

 

Table 3.1.1: Exponential Stress-Strength 

R Mean of R̂  SD of R̂  V Z 
0.5000 0.5023 0.0139 0.0500 1.3014 
0.5000 0.4990 0.0152 0.0250 0.9045 
0.5000 0.4992 0.0155 0.0354 0.5232 
0.6000 0.6017 0.0156 0.0339 0.0827 
0.4000 0.3993 0.0150 0.0339 0.4641 
0.5000 0.4962 0.0390 0.0354 0.9792 
0.4000 0.3995 0.0328 0.0339 0.1573 
0.6000 0.5996 0.0290 0.0339 0.1372 
0.5000 0.5029 0.0551 0.0354 1.6772 
0.4000 0.4097 0.0478 0.0339 2.0269 
0.6000 0.5050 0.0562 0.0339 0.8949 

 
As noted earlier, for achieving a better estimates of R, we have taken M = 500. 

), we have taken M = 50 and 100 also and found that all z-values are insignificant 

= 2. The values of DM and DV are quite small for different values of M, so we may assume 
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he approximate expressions Eq.(3.1.4) and Eq.(3.1.9). As earlier, we take 

and µ . From these we obtain 

) we get an estimate of R̂ . The whole process 

. We obtain mean and variance of R̂ viz. ˆE[R(x,y)] and Var

. We have also drawn normal probability plot (NPP) for R̂ in each case 

Lloyd and Lipow, 1962). For 

2, M = 500 and k = 100 in Fig.3.2.1. DM and DV are 

M and given in the same Table 3.1.1.  

 

DM DV 
0.0006 0.0023 
0.0007 0.0004 
0.0012 0.0011 
0.0011 0.0009 
0.0016 0.0009 
0.0045 0.0014 
0.0041 0.0014 
0.0001 0.0012 
0.0019 0.0001 
0.0006 0.0001 
0.0078 0.0004 

As noted earlier, for achieving a better estimates of R, we have taken M = 500. But to see the accuracy of 

values are insignificant barring M = 50 

= 2. The values of DM and DV are quite small for different values of M, so we may assume 
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that approximations given by Eq.(3.1.4) and Eq.(3.1.9) are up to the mark.  

3.2 Stress -Strength Are Normal Variates 

Let us suppose that X~N(λ , 2ω ) and Y~N(µ , 2σ ). Then we have seen that the reliability of the system is given 

by (Kapur and Lamberson, 1977) 

R = 
2 2

( )

( )

 λ − µ
 Φ
 ω + σ 

, – ∞ < λ ,µ  < ∞ ; 2ω > 0, 2σ > 0,                                                                          (3.2.1) 

where Φ (*) is c.d.f. of standardized normal variate. 

Without loss of generality, we may assume that one of the variable follows N(0, 1). Or often the mean and 

variance of strength are known because, eg., production is more or less under control. In such case also we may assume 

that X ~ N(0, 1). Then Eq.(3.2.1) gives, 

R =
2

 

(1 )

 − µ
 Φ
 + σ 

= 1 –
2(1 )

 µ
 Φ
 + σ 

 = 
2R( , )µ σ , say                                                                       (3.2.2) 

Let us suppose that M components are put on test whose strengths are known and let y1, y2, …, yM be the M 

stresses on them. We know that y  and s2 are independent MLE’s of µ  and 2σ , respectively, which are unbiased, 

consistent and sufficient, where  

s2 = 
2M

i

i 1

(y y)

M 1=

−
∑

−
 and y  =

M

i
i 1

1
y

M =
∑                                                                                                               (3.2.3) 

Then from the properties of MLE’s, R̂ , given below, is the MLE of R 

R̂ = 
2

y
1

(1 s )

 
 − Φ
 + 

 = 
2R̂(y, s ), say                                                                                                       (3.2.4) 

Hence, from Eq.(2.3) 

2ˆE R(y, s ) 
 

 = 
2R( ,  )µ σ + O 

1

M
 
 
 

                                                                                                         (3.2.5) 

Now, since y  and s2 are independent, hence 

2Cov(y,  s )= 0. (3.2.6) 

Hence from Eq.(2.4) and Eq.(3.2.6) we have  
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2ˆVar R(y, s ) 
 

=
2 2

22

y ,s

R̂(y,s )

y
=µ =σ

 ∂
 ∂ 

Var(y)  + 
2 2

22

2
y ,s

R̂(y,s )

s =µ =σ

 ∂
 

∂ 
Var(s2)  

 + O
3/ 2

1

M

 
 
 

                                                                                                                                                    (3.2.7) 

Now from Eq.(3.2.2)  

2R̂(y,s )

y

 ∂
 ∂ 

=
2

1

(1 s )

 
 −
 + 

2

y

(1 s )

 
 Φ
 + 

,                                                                                         (3.2.8) 

And
2

2

R̂(y,s )

s

 ∂
 ∂ 

 = 
2 3/ 2

1 y

2 (1 s )

 
 +  2

y

(1 s )

 
 Φ
 + 

                                                                               (3.2.9) 

Further, we know that  

Var(y ) = 
2

M

σ
 and Var(s2) = 

42

M

σ
                                                                                                                 (3.2.10) 

Substituting from Eq.(3.2.8) , Eq.(3.2.9) and Eq.(3.2.7) in Eq.(3.2.10) we get 

2ˆVar R(y, s ) 
 

= 
2

1

1+ σ

2

M

σ 2Φ + 
2

2 34(1 )

µ
+ σ

42

M

σ 2Φ  + O
3/ 2

1

M

 
 
 

,                                             (3.2.11) 

Where Φ  = Φ
2

 

(1 )

 − µ
 
 + σ 

.  

Or 2ˆVar R(y, s ) 
 

 ~ 
2

M

Φ 2 2 4

2 2 31 2(1 )

 σ µ σ+ + σ + σ 
                                                                                   (3.2.12) 

Thus, we see from Eq.(3.2.5) that R̂ is asymptotically unbiased for R and from Eq.(3.2.11) it is consistent also. 

Since, y , s2 are sufficient for µ  and 2σ , so it is sufficient also. 

Now, from Eq.(3.2.5) and Eq.(3.2.11),  

DM= 
2 2ˆE R(y,s ) R( , )  − µ σ                                                                                                                   (3.2.13) 

And DV = 

2 2 4
2 2 2

2 2 3

1 2ˆVar[R(y,s )]
M M1 4(1 )

σ µ σ− Φ − Φ
+ σ + σ

                                                       

(3.2.14) 

Here, also we use MCS for the validation of the approximations Eq. (3.2.5) and Eq.(3.2.11). For this as in the 
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Sec.3.1, we take samples of different size

variance are y  and s2, respectively. Substit

is repeated k times giving k values of

DM and DV are obtained from Eq. (3.2.13) and Eq.(3.2.14

NPP graphs for ̂R  in each case of Table 3.2.1

distribution. For illustration purpose we have given only one NPP graph of 

in Figure 3.2.1. 

Here, also we have taken M = 500, but for che

= 50 and 100 also. From Table 3.2.1, we note that for k = 100, z

we have taken k = 200 throughout and found that all z

σ = 1. We observe that the values of DM and DV are quite small for different values of M, so the ap

Eq. (3.2.5) and Eq. (3.2.11) are reasonable.

M K µ  σ  
500  100  0 1 
500  200  0 1 
500  200  1 1 
500  200  2 1 
500  200  -1 1 
500  200  -2 1 
100  200  0 1 
100  200  1 1 
100  200  2 1 
100 200  -1 1 
100 200  -2 1 
 50 200  0 1 
 50 200  1 1 
 50 200  2 1 
 50 200  -1 1 
 50 200 -2 1 
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Impact Factor (JCC): 2.6305                                                                                                                  

sizes M from 
2N( , )µ σ  population for particular values of 

, respectively. Substituting these values in Eq.(3.2.4), we get an estimate 

R̂ . Its mean and variance gives 
2ˆE[R(y, s )] and Var

3.2.13) and Eq.(3.2.14). The values are tabulated in Table 3.2.1

in each case of Table 3.2.1. NPP graphs suggest that the data sets reasonably follow the normal 

distribution. For illustration purpose we have given only one NPP graph of ̂R  when M = 500, k = 200, 

Here, also we have taken M = 500, but for checking the accuracy of Eq.(3.2.5) and Eq.(3.2.11

, we note that for k = 100, z-value is significant. So for achieving a better estimate of R 

we have taken k = 200 throughout and found that all z-values are insignificant. For example, z = 0.2522 when m = 0 and 

t the values of DM and DV are quite small for different values of M, so the ap

) are reasonable. 

Table 3.2.1: Normal Stress-Strength 

σ  R Mean of R̂  SD ofR̂  Z for R̂  DM
0.5000 0.4975 0.0115 2.2126 0.0002
0.5002 0.5002 0.0122 0.2522 0.0002
0.2398 0.2400 0.0116 0.2822 0.0002
0.0787 0.0787 0.0056 0.1737 0.0000
0.7603 0.7608 0.0113 0.7002 0.0007
0.9214 0.9211 0.0057 0.6402 0.0001
0.5000 0.4986 0.0277 0.7397 0.0016
0.2398 0.2403 0.0252 0.3223 0.0042
0.0787 0.0781 0.0125 0.6477 0.0029
0.7603 0.7574 0.0220 1.8355 0.0002
0.9214 0.9202 0.0128 1.2910 0.0020
0.5000 0.5000 0.0376 0.3851 0.0027
0.2398 0.2402 0.0343 0.1731 0.0013
0.0787 0.0767 0.0176 1.5687 0.0004
0.7603 0.7590 0.0323 0.5649 0.0005
0.9214 0.9203 0.0189 0.7611 0.0011

 

Figure 3.2.1: (Normal S-S) 
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population for particular values of µ  and 2σ ; its mean and 

we get an estimate ̂R  of R. The whole process 

and Var
2ˆ[R(y, s )], respectively. 

alues are tabulated in Table 3.2.1. We have also drawn 

. NPP graphs suggest that the data sets reasonably follow the normal 

when M = 500, k = 200, µ= 1 and σ  = 1 

cking the accuracy of Eq.(3.2.5) and Eq.(3.2.11), we have taken M 

value is significant. So for achieving a better estimate of R 

values are insignificant. For example, z = 0.2522 when m = 0 and 

t the values of DM and DV are quite small for different values of M, so the approximations given by 

DM DV 
0.0002 0.0001 
0.0002 0.0001 
0.0002 0.0001 
0.0000 0.0000 
0.0007 0.0006 
0.0001 0.0011 
0.0016 0.0010 
0.0042 0.0006 
0.0029 0.0027 
0.0002 0.0056 
0.0020 0.0124 
0.0027 0.0005 
0.0013 0.0002 
0.0004 0.0001 
0.0005 0.0027 
0.0011 0.0062 
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4. CONCLUSIONS 

In this paper, approximate expressions for mean and variance of estimated reliability in interference models are 

evaluated using (Lloyd and Lipow, 1962) method. Here, we have considered two cases-when both stress and strength 

follow exponential distribution and when both stress and strength follow normal distribution. Validity of approximations is 

checked by Monte-Carlo simulation. We have found that expressions are acceptable, particularly when the sample size is 

reasonably large.. The approximate expressions can be extended when stress strength follow more than two parameters 

distributions, also.  
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